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Abstract. The brachistochrone curve corresponds to the minimization of the time functional. In this paper
we discuss the dynamics of a massive particle, which moves classically on the brachistochrone curve under
the potential V = −mgy. We derive the Lagrangian and the Hamiltonian of the particle and show that
this problem corresponds to the particle in an infinite wall with a harmonic oscillator potential and the
solutions of Schrödinger’s equation are confluent hypergeometric functions. We also discuss the periodic
potential problem for the brachistochrones and obtain the band structure of Kronig-Penney model for the
particle with positive energy in a certain limit.

PACS. 03.65.-w Quantum mechanics – 03.65.Ge Solutions of wave equations: bound states –
71.15.Ap Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA,
linearized methods, etc.)

1 Introduction

Brachistochrone is one of the oldest problems of physics
and also one of the earliest problems proposed in the cal-
culus of variations; the story of its dates back to 300-
years [1,2], and it is known as “the shortest time prob-
lem of a particle moving between two points on a vertical
plane”. First, Bernoulli proposed the problem and solved
it by using the optical analogy of Fermat’s least-time prin-
ciple and the method of the calculus of variations. Many
famous mathematicians of the time paid attention to this
problem and the attempts on the subject are considered
as the fundamentals of the calculus of variations. The
well-known solution for the classical least time or brachis-
tochrone problem is a cycloid, which is a curve described
by a point P on a circle that rolls without slipping. The
period of oscillation for the brachistochrone curve depends
on the amplitude.

Even now, it is very popular, because it has several
generalizations, including, e.g. classical Newtonian gener-
alization, relativistic generalizations [3,8]. It has been gen-
eralized to general central forces, both attractive and re-
pulsive [9]. There has been some new approaches to obtain
analytic solutions of the brachistochrone problem [10,11].

The aim of this study is to discuss the quantum
dynamics of a particle, which moves classically on the
brachistochrone curve in a homogeneous force field. The
brachistochrone curve corresponds to the minimization of
the time functional. In Section 2, we are interested in to
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derive the Lagrangian and the Hamiltonian of the parti-
cle, which moves also on the brachistochrone curve by the
minimization of the action functional. In Section 3, we
discuss the solution of the Schrödinger equation for this
Hamiltonian and derive the energy eigenvalues and eigen-
functions. In Section 4, we consider the periodic extension
of the brachistochrone curves and discuss the solution of
the Schrödinger equation for the particle in the periodic
extension of the original brachistochrone problem.

2 Classical system

We consider a particle of mass m moving on a brachis-
tochrone curve, so that the net force on it is the constant
force of gravity, −mgŷ. The minimization of the time func-
tion, t gives the following parametric solutions for the x
and y-coordinates of the particle:

x = a (θ − sin θ)
y = a (1 − cos θ) , (1)

where, the variable θ and the constant a are the angle of
rotation and the radius of the circle rolling on the x-axis,
respectively. We write the Lagrangian of the particle which
moves classically on the curve defined by the parametric
equations (1) with the potential energy V = −mgy and
the kinetic energy Ek = m(ẋ2 + ẏ2)/2. It is

L
(

θ, θ̇
)

= (1 − cos θ)
(

ma2θ̇2 +mga
)

·
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This is the Lagrangian of the particle on the cycloid. We
change the variable θ:

u = a cos
θ

2
·

Then, the Lagrangian L becomes

L (u, u̇) = 8m
[
u̇2 + ω2

(
a2 − u2

)]
, (2)

where ω2 = g/4a. Equation (2) is the Lagrangian of the
harmonic oscillator with the effective mass µ = 16m, with
angular frequency ω. Because of the transformation from θ
to u, the variable u is restricted by the condition |u| ≤ a.
In some sense the brachistochrone problem corresponds to
the harmonic oscillator problem with the infinite wells at
u = ±a. The classical equation of motion is

ü+ ω2u = 0. (3)

So, classically we obtain the following solutions:

u (t) = A sinωt+B cosωt, (4)

and

θ (t) = 2 cos−1

(
A sinωt+B cosωt

a

)

. (5)

The conjugate momentum of the system is

pu =
∂L

∂u̇
= 16mu̇.

Thus, the Hamiltonian of system can be written as

H =
p2

u

2µ
− µω2

2
(
a2 − u2

)
, (6)

where µ = 16m and −a ≤ u ≤ a, because of the geom-
etry of the problem. That means there are infinite well
potential for |u| ≥ a.

3 Quantization

The energy eigenfunctions, ΨE satisfy the following eigen-
value equation:

ĤΨE(r) = EΨE(r) , (7)

where E is the energy eigenvalue and Ĥ is the Hamil-
tonian operator corresponding to equation (6). We write
equation (7) explicitly

d2ψ (u)
du2

+
2µ
�2

[

E +
µω2

2
(
a2 − u2

)
]

ψ (u) = 0. (8)

Here, we assume that

E > −1
2
µω2a2,

where, −µω2a2/2 is the minimum value of the potential
energy. For the sake of simplicity we introduce the follow-
ing dimensionless parameters in equation (8):

λ =
E

′

�ω
, E′ = E +

1
2
µω2a2, ς =

√
2µω

�
u. (9)

Thus, equation (8) reduces to

d2ψ (ς)
dς2

+
(

λ− ς2

4

)

ψ (ς) = 0. (10)

Equation (10) is known as the oscillator differential
equation and the solution of it are well known in the infi-
nite interval (−∞,∞):

ψ (ς) = e−
ς2
4

[

C 1F1

(

−p
2
,
1
2
;
ς2

2

)

+C′ς 1F1

(
1 − p

2
,
3
2
;
ς2

2

)]

, (11)

where p = λ− 1/2. C and C′ are the constants.
Since the potential energy is an even function of ς,

ψ (−ς) is also an eigenfunction corresponding to the same
energy eigenvalue like ψ (ς). Therefore, the general solu-
tions have definite parities:

Ψ (+) (ς) = Ce−
ς2
4 1F1

(

−p
2
,
1
2
;
ς2

2

)

Ψ (−) (ς) = C′e−
ς2
4 ς 1F1

(
1 − p

2
,
3
2
;
ς2

2

)

. (12)

The geometry of the problem gives the boundary condi-
tions as

Ψ (±)

(

±
√

2µω
�
a

)

= 0. (13)

This condition gives

1F1

(

−p
2
,
1
2
;
µωa2

�

)

= 1F1

(
1 − p

2
,
3
2
;
µωa2

�

)

= 0. (14)

It is difficult to calculate the roots of equation (14); be-
cause each of them represents infinite series. For this rea-
son we use a graphical method. Firstly, we write their
first twenty five terms of the series for each of the conflu-
ent hypergeometric functions in equation (14). Later, we
draw the graphs of these functions for the each different
numerical value given for µωa2/�. So we obtain numeri-
cally p points at the zeros of the function for each µωa2/�,
and then the tables of data

(
µωa2/�, p

)
. It is shown in

Figure 1. To fit an equation to these data, we use a pro-
cess called curve fitting [12]; the resulting equation is given
below:

pn = n+
(n+ 1)2 �

µωa2
; n = 0, 1, 2, ... (integers) . (15)
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Fig. 1. The first 8 pn eigenvalues mentioned in the brachis-
tochrone problem in the potential, V = −mgy as a function of
the parameter µωa2/�. The solid curves belong to pn eigenval-
ues with even subindexes; and the dashed curves belong to pn

eigenvalues with odd subindexes.

Fig. 2. The first 3 exact wave functions, but taking the approx-
imate energy eigenvalues, pn for the brachistochrone problem.
The dark curve shows the schematic of the potential as a func-
tion of ς. We set here µωa2/� = 1 and, n = 0 for the light solid
curve, n = 1 for the dot dashed curve, n = 2 for the dashed
curve.

Thus, we can write unnormalized eigenfunctions and the
energy eigenvalues as

Ψ (+)
pn

(ς) = Ce−
ς2
4 1F1

(

−pn

2
,
1
2
;
ς2

2

)

E(+)
pn

= −1
2
µω2a2 + �ω

(

pn +
1
2

)

; n = even integers,

(16)

Ψ (−)
pn

(ς) = C′e−
ς2
4 ς 1F1

(
1 − pn

2
,
3
2
;
ς2

2

)

E(−)
pn

= −1
2
µω2a2 + �ω

(

pn +
1
2

)

; n = odd integers.

(17)

Taking approximate energy eigenvalues, the exact forms
of the wave functions in equations (16, 17) are plotted in
Figure 2.

It is useful to discuss the limits of these solutions for
ω → ∞ and ω → 0.

(i) The limit
√

2µω/�a → ∞ corresponds to the har-
monic oscillator problem. As it is given in equation (15)
and shown in Figure 1, if

√
2µω/�a is very large, these

solutions give the integer values for p. If we look at the
asymptotic behaviour of Ψ (±)

p as
√

2µω/�a → ±∞ [13],
we can check these integer values for p. Using these in-
teger values for p and the following connection between
confluent hypergeometric function and Hermite polyno-
mials [14]:

H2n(x) =
(−1)n (2n)!

n! 1F1

(

−n, 1
2
;x2

)

(18)

H2n+1(x) =
(−1)n 2 (2n+ 1)!

n!
x 1F1

(

−n, 3
2
;x2

)

, (19)

so we obtain the following normalized eigenfunctions and
the energy eigenvalues as

ϕn (u) =
( √

π

2nn!

) 1
2

Hn

(√
µω

�
u

)

e−
µω
2�

u2

E′
n = �ω

(

n+
1
2

)

; n = pn = 0, 1, 2, ..., (20)

where Hn

(
ς/
√

2
)

are the Hermite polynomials. As it is
seen from equation (20), the eigenfunctions and the energy
levels obtaining in this limit are the same as those of a
harmonic oscillator solutions.

(ii) The condition
√

2µω/�a � 1 represents the case
of an infinite well potential. To show this we apply the
power series expansion of Ψ (±) (ς) around ς = ±√2µω/�a
in equation (11)

Ψ (±) (ς) = N (±)
∞∑

n=0

dnΨ (±) (ς)
dςn

∣
∣
∣
∣
ς=
√

2µω
�

a

×

(

ς −
√

2µω
�
a

)n

n!
· (21)

For ω → 0, the series in equation (21) reduce to

lim
ω→0

Ψ (±) (ς) = Ω(±) (ς)

∼= N (±)

√
λ

{

cos(
√
λς) for even solutions

sin(
√
λς) for odd solutions.

(22)

If we use the continuity conditions for the wave functions
at the boundaries of the classical region ±√2µω/� a , and
normalize them in interval [−√2µω/�a,

√
2µω/�a], we

obtain the normalized eigenfunctions and eigenvalues of
energy which are the solutions of the infinite-well poten-
tial as

Ω(±) (u) ∼= 1√
a






cos
(

(n+1/2)π
a u

)

, E
′(+)
n = (2n+1)2�

2π2

8µa2

for even solutions.

sin
(

nπ
a u
)
, E

′(−)
n = n2

�
2π2

2µa2

for odd solutions.
(23)

where, n = 0, 1, 2, ...
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Fig. 3. Schematic of the periodic potential for brachis-
tochrones in one dimension.

4 Periodic potential problem
for brachistochrones

For a potential with period, P the solutions of the
Schrödinger’s equation satisfy the Bloch condition and the
spectrum shows energy bands, and the wave functions sat-
isfy the periodicity condition, Ψ (ς) = ±Ψ (ς + P ) at the
band edges. The potential of our problem is in the form of
V = −µω2(a2 − ς2/ε2)/2, where ε2 = 2µω/�. We consider
an infinite array of these cycloid shaped potentials with
the interval b in one dimension as it is shown in Figure 3.
The particle moves under the influence of these periodic
potentials. Thus the potential is the symmetric and the
form of the following periodic function:

V (ς + nP ) = V (ς) , (24)

where P = 2εa + b and b is the length of the distance
in which the potential is zero. Thus the solutions of
the Schrödinger equation are also periodic according to
Floquet theory [13] and given as

Ψ (ς + nP ) = einΦΨ (ς) , (25)

where eiΦ is a phase factor. We will first discuss the
energy eigenvalues for bound and unbound states, then
present some limit cases for b → 0; and 2εa → 0,
V0 = −µω2a2/2 → −∞.

4.1 Bound states

The energies of the bound states are in the interval
−(µω2/2)a2 < E < 0, and the eigenfunctions have the
following form:

In the period −εa < ς < b+ εa,

Ψ (ς) =

{
MΨ (+) (ς) +NΨ (−) (ς) ; −εa < ς < εa

Aeκς +Be−κς ; εa < ς < b+ εa,
(26)

where Ψ (+) (ς) and Ψ (−) (ς) are defined in equation (12),
andM ,N , A andB are the constants. The second solution
in equation (26) is the solutions of Schrödinger’s equation
with the zero potential, and κ2 = |E|/�ω.

In the next period, b + εa < ς < 2b + 3εa or b + εa <
ς < b+ εa+ P ,

Ψ (ς) = eiΦ






MΨ (+) (ς − P ) +NΨ (−) (ς − P ) ;
b+ εa < ς < b+ 3εa

Aeκ(ς−P ) +Be−κ(ς−P );
b+ 3εa < ς < 2b+ 3εa.

(27)

Thus we use the continuity conditions of the functions, Ψ
and of the derivations of them; since the potentials are
finite. From the continuity conditions at ς = εa and ς =
b+ εa, we obtained the following matrix equations:









c εaf 1 −1

−εa
(

c
2

+ pd
) − ε2a2f

2
+ f + ε2a2(1−p)h

3
κ κ

eiΦc −eiΦεaf eκb −e−κb

eiΦεa
(

c
2

+ pd
)

eiΦ
(

− ε2a2f
2

+ f + (1−p)ε2a2h
3

)

κeκb κe−κb









×






M
N
A
B




 = 0, (28)

where c, f , d and h represent the following constants:

c = 1F1

(

−p
2
,
1
2
;
ε2a2

2

)

f = 1F1

(
1 − p

2
,
3
2
;
ε2a2

2

)

d = 1F1

(
2 − p

2
,
3
2
;
ε2a2

2

)

h = 1F1

(
3 − p

2
,
5
2
;
ε2a2

2

)

· (29)

Equation (28) has untrivial solutions under the following
condition:

cosΦ = coshκb− ε2a2f (c+ 2pd) coshκb
[
cf − 1

3cε
2a2h (p− 1) + ε2a2pdf

]

− εab

2






1 +

[

− (4κ2 + ε2a2
)
cf + 4

(
1 − ε2a2

)
pdf

2
[
cf + ε2a2pdf − 1

3 cε
2a2h (p− 1)

]

−
4
3ε

2a2p (p− 1) dh
]

2
[
cf + ε2a2pdf − 1

3 cε
2a2h (p− 1)

]






sinhκb
κb

· (30)

We can represent the right side of equation (30) as a func-
tion of E, f (E), because the energy appears through κ, p,
c, f , d, h. Since |cosΦ| ≤ 1, the problem has no solution
for |f (E)| > 1, and hence no allowed energy eigenvalues
exist.Thus, we determine the possible energy eigenvalues
by the condition

−1 ≤ f (E) ≤ 1. (31)
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Fig. 4. Allowed p = − |E| /�ω − 1/4 values for εa = 1 at the
limit b → 0.

Fig. 5. Allowed p = −|E|/�ω + 1/2 values for εa = 2 at the
limit b → 0.

We derive the band structure of the energy spectrum. To
understand the structure of the energy spectrum, we can
discuss the particular cases for such b → 0 and 2εa → 0,
V0 = − 1

2µω
2a2 → −∞.

4.1.1 Limiting cases

(i) b→ 0: in this case, the associated potential for brachis-
tochrones has period P = 2εa. Hence the corresponding
energy function is

f (E) =
ε2a2f (c+ 2pd)

[
cf − 1

3cε
2a2h (p− 1) + ε2a2pdf

] · (32)

In Figures 4 and 5, we plot the graphics, (p, f (E)) for the
arbitrary constant values of εa. The allowed regions lie in
the interval 0 ≤ f (E) ≤ 2. If εa is in the interval (0, 1),
all regions are allowed and energy spectrum is continuous.
For εa = 1, as it is seen from Figure 5, the forbidden en-
ergy regions appear for small energies and the spectrum
is continuous as the energy increases in the allowed re-
gion. For εa = 2, as it is seen from Figure 4, the width of
the allowed region decreases and the energy spectrum is
continuous in the allowed region. The width of the allowed
region decreases, if we use the larger constant values of εa.
There is no solution for εa� 1.

(ii) 2εa → 0, V0 = −µω2a2/2 → −∞: in this case,
we reduce the thickness of the potential to zero but we

Fig. 6. Allowed regions lie between two curves at the limit
2εa → 0 and V0 → −∞.

increase the deepness of the potential to infinite, so that
the area under the potential function remains constant:

lim
2εa→0

−1/2µω2a2→−∞

2
3
µω2εa3 = Θ = constant. (33)

Thus, we obtain the following condition for allowed energy
values:

−1 ≤ cosh (κb) −Θ
sinh (κb)

κb
≤ 1. (34)

As it is seen from Figure 6, if 0 < Θ ≤ 2, the energy
eigenvalue spectrum lies between definite values and it is
continuous in this interval. If Θ > 2, the energy eigenvalue
spectrum contains two allowed bands; as the values of Θ
increase, the width of these bands decreases.

4.2 Positive energies

We derive the bound states with positive energy by sub-
stituting k → −iκ in equations (26–28). Then the condi-
tion (30) becomes

cosΦ = cos kb− ε2a2f (c+ 2pd) cos kb
[
cf − 1

3cε
2a2h (p− 1) + ε2a2pdf

]

− εab

2






1 +

[
(
4k2 − ε2a2

)
cf + 4

(
1 − ε2a2

)
pdf

2
[
cf + ε2a2pdf − 1

3 cε
2a2h (p− 1)

]

−
4
3ε

2a2p (p− 1) dh
]

2
[
cf + ε2a2pdf − 1

3cε
2a2h (p− 1)

]






sin kb
kb

, (35)

where k2 = E/�ω ≥ 0.

4.2.1 Limiting cases

(i) b → 0: the allowed regions are the same with bound
states. They differ from each others with the sign of ener-
gies. The allowed regions lie in the interval 0 ≤ f (E) ≤ 2
and we give the function f(E) as in equation (32).
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Fig. 7. Allowed energy eigenvalue spectrum at the limit
2εa → 0 and V0 → −∞. Solid curve is drawn with Θ = 3π/2.

(ii) The limit 2εa→ 0, V0 = −µω2a2/2 → −∞: in this
limit, the energy function f (E) becomes

f (E) = cos kb−Θ
sin kb
kb

· (36)

From Figure 7, it can be seen that the energy spectrum
consists of a series of separate regions, inside each of which
the energy of the particle can vary continuously. These
regions contains allowed and forbidden bands. The allowed
bands increase as the energy increases. The results which
we obtained in this limit are similar the band structure
that has been derived with Kronig-Penney model.

5 Discussion

In this paper, we investigated the energy eigenvalues and
eigenfunctions for one of the oldest problems of physics.
Since the problem appears in optics, cosmology and solid
state physics, to understand the quantum dynamics of this
problem is important. For this purpose, firstly we have
investigated quantum mechanically the brachistochrone
problem in a linear gravity potential −mgy, and obtained
the wave functions and energy spectrum of a particle with
mass m.

Figure 1 shows the first eight energy levels of the
system as a function of the parameter µωa2/�. These
energy levels are not equally spaced for the small values
of µωa2/�; the spaces between the energy eigenvalues
increase with the quantum number n. Although the pn

values in equation (15) are not the exact analytic expres-
sion for the energy eigenvalues of the system, they reflect

the behaviour of the problem. We can say that all pn

values are finite. On the other hand, the problem com-
bines the infinite-well and harmonic oscillator potentials
and reduces to the harmonic oscillator for ω → ∞ and
to the infinite-well potential for ω → 0. The solutions re-
flect the properties of the energy spectrum that is propor-
tional to n and n2. The eigenfunctions have even- and
odd-parity. In this work, we investigate the least time
problem by the transformation ς =

√
2µω/�a cos θ

2 , and
obtained the solutions with this variable. We have also
considered the classically allowed region as the interval
[−√2µω/� a,

√
2µω/�a], the potential is infinite at the

outside of this interval.
Secondly, we have shown that the band structure arise

from Floquet theory if the potential is periodic. For the
limit b → 0, the band structures of positive and negative
energy states are similar to each other. For the positive
energies and the limit 2εa → 0, V0 → −∞, we have seen
that our problem is equivalent to the periodic δ-potential
problem or Kronig-Penney model.

This research is partially supported by Akdeniz University
(20.01.0105.12).
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